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To extend agricultural productivity by knowledge-based breeding and tailor varieties adapted to specific
environmental conditions, it is imperative to improve our ability to assess the dynamic changes of the
phenome of crops under field conditions. To this end, we have developed a precision phenotyping platform
that combines various sensors for a non-invasive, high-throughput and high-dimensional phenotyping of
small grain cereals. This platform yielded high prediction accuracies and heritabilities for biomass of
triticale. Genetic variation for biomass accumulation was dissected with 647 doubled haploid lines derived
from four families. Employing a genome-wide association mapping approach, two major quantitative trait
loci (QTL) for biomass were identified and the genetic architecture of biomass accumulation was found to be
characterized by dynamic temporal patterns. Our findings highlight the potential of precision phenotyping
to assess the dynamic genetics of complex traits, especially those not amenable to traditional phenotyping.

P
lant breeding has substantially contributed to the increase in agricultural productivity during the last
century1 but satisfying the needs of a growing human population still presents a tremendous challenge
for crop improvement2. While recently developed genomic approaches promise to dramatically increase

progress by breeding3, our ability to characterise the phenome of a plant in the field has changed little since the
advent of science-based plant breeding more than 100 years ago. This phenotyping bottleneck is of particular
severity since many traits of biological and agricultural importance are under the control of complex dynamic
regulation4. For example, biomass changes with plant development over time but traditional approaches to
unravel the genetic architecture underlying such traits focused on single time points thus neglecting the devel-
opmental dynamics of trait formation. A key component to maintain or even increase agricultural production is,
therefore, the development of phenotyping technologies that enable monitoring the phenotypic changes of crop
plants in the field5,6.

The accumulation of biomass is central to agricultural productivity but the non-invasive monitoring of
biomass using various sensors has thus far yielded only moderate prediction accuracies7–9. This may be attributed
to the failure in combining information derived from different but complementary types of sensors10. Triticale (x
Triticosecale Wittmack L.; AABBRR; 2n 5 6x 5 42), the interspecific cross between wheat and rye, is mainly used
as animal feed but also shows great potential as bioenergy crop and is thus well suited to study the dynamics of
biomass accumulation in small grain cereals. Here, we present a novel precision phenotyping platform for non-
invasive high-throughput phenotyping of small grain cereals under field conditions and its application to dissect
the genetic architecture of biomass accumulation by a genome-wide association study.

Results
Precision phenotyping platform. We have developed a novel precision phenotyping platform that enables high-
throughput and high-dimensional phenotyping of small grain cereals in the field (Fig. 1). Our precision
phenotyping platform permits the collection of data from complementary types of sensors and incorporates
light curtains, laser distance sensors, 3D-Time-of-Flight cameras, and high-resolution hyperspectral imaging11. In
addition, it allows for sensor fusion to accurately predict biomass under field conditions (Fig. 1b,c). We conducted
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a detailed calibration experiment for our precision phenotyping
platform based on 1,200 biomass yield plots of triticale. The
technical repeatability of the different single sensor measurements
was high (Table S1). The platform enables high-throughput screen-
ing of more than 2,000 plots per day which in combination with the
nearly fully automated subsequent data analysis facilitates rapid and
economic trait determination. The technical repeatability of the
sensor fusion calibration model for biomass was very high
(Fig. 1d) and we obtained excellent prediction accuracies for
biomass at all three developmental stages (Fig. 1e). Transferability
of the calibration models across environments was evaluated by
predicting biomass yields of the year 2012 based on the data from
2011 and vice versa. This yielded high cohort validated R2 values of
0.93 and 0.84 (Fig. S3).

Temporal genetic patterns of biomass accumulation. Using the
precision phenotyping platform and the developed calibration
models we predicted biomass at three developmental stages (BM1–
BM3) in a large mapping population of 647 doubled haploid triticale
lines (Fig. 2a, S4a). The predicted biomass data were highly heritable
with heritabilities ranging from 0.78 to 0.84 (Table 1, S3). We used a
genome-wide association mapping scan to identify QTL associated
with biomass at each of the three developmental stages (Table 1,
Fig. 2, S5, S6a). A detailed analysis of the linkage disequilibrium
structure in the genomic regions associated with biomass (Fig. S7–
S10) and the collinearity among markers (Table S4) revealed two
major QTL regions on chromosomes 5A and 5R with effects on

biomass (Fig. S11). The markers most closely linked to the two
major QTL and thus candidates for a marker-assisted selection are
wPt-2329 on chromosome 5A and rPt-509721 and rPt-399681 on
chromosome 5R. Together, all identified QTL explained 40.14, 31.55,
and 28.52% of the genetic variance of predicted BM1, BM2, and BM3,
respectively.

A multivariate analysis incorporating BM1, BM2, and BM3,
jointly identified the same two major QTL on chromosomes 5A
and 5R that have been identified in the analyses of the single devel-
opmental stages (Fig. 2, S4b, S6b, Table S5, S6). In addition, growth
curve parameters were estimated for each line and used for QTL
mapping (Fig. S13, Table S7, S8). To dissect the genetic architecture
underlying biomass accumulation, we performed full 2-dimensional
epistasis scans. Epistatic QTL for biomass were detected for all three
developmental stages (Fig. 3).

Discussion
Genomic approaches to dissect the genetic architecture of complex
traits rely on both high-quality genotypic and phenotypic data.
While the power of current genotyping technologies enables high-
density genotyping or even resequencing of entire genomes, our
ability to measure traits in the field is limited. Advances in sensor
technologies, however, now offer an array of tools that can be
deployed to overcome this phenotyping bottleneck and bring a
revolution to the assessment of the plant phenome. The precision
phenotyping platform presented here combines various sensors
for a non-invasive assessment of small grain cereals under field

Figure 1 | Precision phenotyping platform. (a,b) Platform with multiple sensors for non-invasive assessment of biomass under field conditions. 3D-

ToF: 3D-Time-of-Flight camera; LDS: laser distance sensor; HSI: hyperspectral imaging; LCI: light curtain imaging. (c) Information captured by the

different sensors in a single yield plot. (d) Technical repeatability , and (e) prediction accuracy of the platform based on sensor fusion models using data

from two years. R2
v and R2

w denote the coefficient of determination of cross-validation and of repetition, respectively, and RMSREv and RMSREw

denote the root mean squared relative error of cross-validation and of repetition, respectively.
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conditions11. With a capacity of more than 2,000 plots per day for
data collection and post-processing of the collected raw data, it out-
performs the phenotyping capacity of a person and, most impor-
tantly, permits the collection of data for novel traits not amenable
to traditional phenotyping (e.g., biomass, stress tolerance, or primary
and secondary metabolites).

The limited prediction accuracies of the calibration models based
on single sensors (Table S1) clearly emphasized the need to integrate
data from multiple sensors to capture complementary information
on plant characteristics (Table S2). This is, for example, illustrated by
the improvement in biomass prediction accuracy by considering dry
matter content which can accurately be predicted with hyperspectral
imaging (Fig. S1, S2). The high technical repeatability (Fig. 1d), the
high prediction accuracies (Fig. 1e) and the high heritability (Table 1)
illustrate that the sensors and the sensor fusion calibration models as
employed here are well suited for the non-invasive assessment of
biomass yield. A parameter of eminent relevance for plant breeding

is the transferability of the established calibration models across
environments. The high accuracies obtained for calibration models
established in one year and predicting in the other year demonstrate
the robustness of the approach (Fig. S3). In conclusion, the precision
phenotyping platform facilitates the non-invasive collection of high-
quality, multi-dimensional, and high-throughput phenotypic data
under field conditions.

A large mapping population of 647 doubled haploid triticale lines
derived from four crosses was employed to determine the heritable
portion of variation for biomass accumulation and dissect the under-
lying genetic architecture. The biomass data predicted based on the
developed calibration models were highly heritable at all three devel-
opmental stages (Table 1, S3). These high heritabilities in combina-
tion with the high prediction accuracies illustrate the great potential
of the precision phenotyping platform for genomics approaches.
Genome-wide association mapping scans at the three developmental
stages identified two major QTL regions associated with biomass
yield (Fig. 2). The moderate predictive power for the proportion of
explained genotypic variance obtained with the identified QTL
(Table 1) suggests that biomass must be regarded as highly complex
trait with many small effect QTL12 that escape detection in QTL
mapping approaches. Consistent with the complex nature of the
trait, grain yield, heading time, spikes per square meter, 1000-kernel
weight, and early plant height have recently been identified as key
contributors to early biomass13. Our results illustrate the great
importance of non-invasively assessing different time points in plant
development as a prerequisite for knowledge-based adaptation
breeding to tailor cultivars to local climatic conditions (Fig. S12).
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Figure 2 | Genetic architecture of biomass accumulation. (a) Schematic representation of small grain cereal growth and the three developmental

stages at which biomass (BM) was assessed in this study. (b) Venn diagram for markers significantly associated with BM1, BM2, BM3, and in the

multivariate analysis. (c) Manhattan plots of the genome-wide association study. Significant associations are shown in green.

Table 1 | Detection of main effect QTL

BM1 BM2 BM3

h2 0.78 0.84 0.79
QTL 23 25 17
pG 40.14 31.55 28.52

Heritability (h2), number of significantly associated markers (QTL), and the proportion of explained
genotypic variance (pG in%) for biomass (BM) at three developmental stages.
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Our analysis of the main effect QTL for biomass at the three
developmental stages revealed a dynamic genetic pattern underly-
ing biomass accumulation (Fig. 2). Whereas the major QTL on

chromosome 5R is active throughout plant development, the other
major QTL on chromosome 5A shows a temporal pattern of activity.
It contributes strongly to biomass at the early stage, then its activity
ceases and by the last developmental stage it has completely discon-
tinued its contribution to biomass accumulation. This may also be
caused by the temporal contribution of one of the above-mentioned
traits with a causal relation to biomass, for example heading time.
The observed temporal activity of QTL motivated us to perform a
QTL scan accommodating the multivariate nature of the developing
trait which confirmed the need for a temporal assessment because
many QTL would remain undetected by the traditional static exam-
ination of only a single time point in development (Fig. 2, S4b, S6b,
Table S5, S6). The growth of organisms has recently been shown to
follow a sigmoid curve based on fundamental principles for the
allocation of metabolic energy between maintenance of existing tis-
sue and the production of new biomass14. As an alternative approach
we therefore determined growth curve parameters based on a logistic
growth function, a common sigmoid function, and used these for
QTL mapping4. This approach confirmed that biomass accumula-
tion is to a large extent genetically determined (Table S7) and the
identified QTL further substantiate the dynamic genetics underlying
the trait (Fig. S13, Table S8). In conclusion, a temporal assessment of
the phenome, as facilitated by the developed precision phenotyping
platform, is of paramount importance to unravel the complex genetic
patterns underlying the expression of dynamic traits. This knowledge
can in turn assist the selection of lines with complementary pattern
types as crossing parents.

The observed temporal activity of individual QTL suggested that
also interactions among loci may show patterns of genetic regulation
during plant development. Epistasis refers to the dependency of the
effect of an allele at one genetic locus on the allele status at one or
multiple other loci15. Recent work at the level of proteins has pro-
vided evidence that epistasis is as key player regulating evolution and
potentially also fitness levels of individuals within a population16. In
accordance with this, epistasis has been shown to contribute to the
genetic architecture of complex traits in crops17,18. Employing full 2-
dimensional epistasis scans we detected epistatic QTL for biomass at
all three developmental stages (Fig. 3). The proportion of explained
genotypic variance by single epistatic QTL was small, but given their
high number we speculate that epistasis contributes substantially to
the heritability of biomass in small grain cereals. Our results on the
complex trait biomass thus corroborate those from a recent theor-
etical approach showing that the contribution of epistasis increases
with the biological complexity of the trait19. Interestingly, we found
that the main effect QTL detected on chromosome 5R is also
involved in a high number of epistatic interactions with loci through-
out the genome. Such epistatic master regulators have recently been
described in Arabidopsis, wheat and sugar beet20–22. A possible
molecular mechanism mediating such associations has been pro-
vided by the discovery that the human transcription factor KLF14
acts as trans master regulator of adipose gene expression23 suggesting
that transcriptional regulation may in part explain the observed epi-
static interactions. As for the main effect QTL, we observed temporal
patterns also for the epistatic interactions. Our results thus illustrate
that the entire genetic architecture of biomass accumulation in triti-
cale is under dynamic control.

In a wider context, our discoveries on biomass accumulation in
triticale are likely to have broad relevance to other crops as well as
other traits showing dynamic genetic patterns of regulation. We
anticipate that with the incorporation of information from addi-
tional sensors other agronomic important traits like for example
disease resistances can be dynamically phenotyped. On the basis of
our results we conclude that precision phenotyping platforms may
become the method of choice to assess the genetics of complex
dynamic traits under field conditions.
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Methods
Plant material and field trials. For this study we used triticale as model species for
small grain cereals. Two experiments were conducted: one for the calibration of the
precision phenotyping platform and a second experiment aimed at dissecting the
genetic architecture of biomass accumulation. The calibration experiment was based
on 25 diverse triticale lines that were grown at one location (Stuttgart-Hohenheim,
Germany) in two years under two plant densities (280 plants per m2 as optimum and
reduced to 140) and two N fertilizer schemes per plant density (standard practice and
50% reduction), with two replicates per treatment combination. The plants were
phenotyped with the precision phenotyping platform and subsequently harvested
with a field chopper at approximately BBCH stage 49 (awns visible), 69 (late
flowering), and 81 (very early dough development)24 to determine the reference fresh
weight. A sample of every plot was dried to determine dry matter content and dry
biomass yield.

The second experiment was based on a mapping population of 647 doubled hap-
loid triticale lines25 derived from four families designated AxB (131), AxC (120), DxE
(200), and DxF (196) which have been described by Alheit et al.26 as populations DH6,
DH7, EAW74 and EAW78. The lines from the mapping population were grown in
partially replicated designs27 including common checks with 960 plots per location at
a plant density of 280 plants per m2. The mapping population was grown at two
locations (Germany: Stuttgart-Hohenheim, 48.77u latitude, 9.18u longitude;
Bohlingen, 47.72u latitude, 8.9u longitude) in two years (2011 and 2012). All plants
were assessed with the phenotyping platform between 9 AM and 6 PM at approxi-
mately BBCH stage 49, 69, and 81 to predict biomass based on the calibration models
established in the calibration experiment. The growth parameters (m, l, integral) were
determined with the R package grofit28. The growth rate is expressed by the maximum
slope m, l is the length of the lag phase and the integral corresponds to the area under
the curve (Fig. S13).

Association mapping. The plants were genotyped with 1710 DArT markers and the
map positions of a consensus map were used for the analysis26. Linkage
disequilibrium (LD) was measured as r2 [ref 29] and calculated with software package
Plabsoft30. Genome-wide association mapping was done with a mixed model
approach incorporating kinship information21,31,32. For main effect QTL and for
epistatic QTL, the Bonferroni-Holm procedure33 was applied to correct for multiple
testing with P , 0.05. In addition, a multivariate mixed model approach with
different models for the variance structure was used to allow for correlations among
the three developmental stages. All mixed model calculations were performed using
the software ASReml 3.034. The proportion of genotypic variance (pG) explained by
the detected QTL was calculated by fitting all QTL simultaneously in the order of the
strength of their association with the trait in a linear model including a family effect to
obtain the sums of squares of the QTL (SSQTL). Thus, pG 5 SSQTL/h2, where h2 refers to
the heritability32. The circular plots illustrating the epistatic interactions were created
with Circos35. The results from the QTL mapping are available as supplementary data.

Phenotyping platform. We implemented a sensor platform using a tractor pulled
trailer equipped with two light curtains (Infrascan 5000, Sitronic GmbH, Steyregg,
Austria), three laser distance sensors (LDS1: OADM 96k/V66-2300-S12, Leuze
Electronic GmbH 1 Co. KG, Owen, Germany; LDS2 and LDS3: OADM 20I6480/
S14F, Baumer Holding AG, Frauenfeld, Switzerland), two 3D-Time-of-Flight
cameras (Effector3D, Ifm Electronic GmbH, Essen, Germany), and a hyperspectral
imaging system (Helios Core NIR, EVK DI Kerschhaggl GmbH, Raaba, Austria)
equipped with a 120 W halogen lighting system (Figure 1). The sensors were
mounted at the back of the trailer in a separate height adjustable sensor module which
was shaded with a black canvas to avoid influence of direct solar radiation. A detailed
technical overview of the developed precision phenotyping platform including
descriptions of the mechanical design, the integrated sensor systems, the hard- and
software design for plot based data collection and analysis and the phenotyping
procedure are given in Busemeyer et al.11.

Biomass prediction. The model to determine the biomass of the plots is based on the
fusion of parameters with selectivity to (i) the volume of the plants and (ii) their
density, both extracted from sensor raw data for each plot. These parameters were
fused and related to the dry biomass of each plot of the calibration experiment by
multiple linear regression analysis to generate a calibrated biomass determination
model.

The density of a plant is related to its dry matter content. Consequently, we used the
hyperspectral imaging system to determine the dry matter content of the plants
(which is physically based on the selectivity of the spectral imaging system to the
plants’ moisture content) and used this information as an approximation for the
density of the plants. The automated analysis of spectral imaging data was performed
with an application developed with the software package MATLAB (The Math
Works, Natick, USA) including all steps of data transformation between sensor raw
data and predicted dry matter content for each plot. In a first step noise occurring in
the raw data coming from uneven spectral sensitivities of the sensor and a spatially
unbalanced illumination was compensated by dividing all measured spectra by a
reference. These reference spectra were generated under controlled conditions by
placing a reference object made of SpectralonH in the sensor’s field of view. In the next
step the spectral values of a plot were split into two data sets corresponding to values
from plants and soil based on the spectral angle mapper method36 with a threshold a
of 0.03. Angles below this threshold were classified as spectra belonging to plants and
the remaining spectra were excluded from further analysis. To reduce the influence of

different reflection intensity levels due to shaded parts of the plants and different
distances of the plants to the sensor, all spectra were normalized to a value of 1 at the
wavelength of 1050 nm which is a wavelength nearly unaffected by the water content
of the plants. Subsequently, all spectra belonging to plants were averaged to a single
spectrum for each plot and the first derivative of the spectrum was calculated for a
baseline shift correction. The pre-processed hyperspectral data of the plants were
used in combination with a principle component analysis (PCA) using the MATLAB
function plsregress to develop a calibration model for non-invasive determination of
dry matter content of a plot.

We defined and extracted different parameters with selectivity to the volume of the
plots from the raw data of the 3D-Time-of-Flight cameras, the light-curtains and the
laser distance sensors. The automated data analysis for all different types of sensors
was performed with an application developed with the software package MATLAB.
The data of the 3D-Time-of-Flight cameras was used to estimate the following
parameters for each plot: (i) ‘‘Plant height’’ calculated as the difference between the
average of the 1% maximum and 1% minimum distances. (ii) ‘‘Penetration-depth-
top-3D’’ calculated as the mean value of all distance values minus the average value of
the 1% minimum distances. (iii) ‘‘Penetration-depth-sidewise-3D’’ estimated as the
mean value of all distance values measuring from side view into the plants.

The data of the light-curtains was used to extract the following parameters for each
plot: (i) ‘‘Plant height’’ was determined as the average value of the 1% highest inter-
rupted light barriers in combination with the laser distance sensor mounted at the
bottom edge of the light-curtain which delivers the distance of the light-curtains to the
ground. (ii) ‘‘Coverage density’’ was estimated as the percentage of interrupted light
barriers of the lower light-curtain of a plot. To avoid a possible impairment of plots
with low plant heights, the algorithm first determines the canopy of the plot and then
only takes into account the light barriers underneath the average top edge of the
plants.

As a third approach, we used data of the laser distance sensors and estimated the
following parameters for each plot: (i) ‘‘Plant height’’ was measured with LDS1 as the
difference between the average value of the 3% maximum and 3% minimum dis-
tances. (ii) ‘‘Penetration-depth-top’’ was estimated with LDS1 as the mean value of all
distance values minus the average value of the 3% minimum distances. (iii)
‘‘Penetration-depth-sidewise’’ was determined with LDS2 as the mean value of all
distance values. (iv) ‘‘Leap-rate’’ was calculated based on data of LDS2. Distance leaps
between consecutive raw data values .2 cm were interpreted as intersections
between two single plants. ’’Leap-rate’’ refers to the sum of detected distance leaps and
was used as an approximation for the number of plants.

The different parameters with selectivity to the volume and the average density of
the plots and plants, respectively, were fused and related to plant biomass with
multiple linear regression to generate a biomass prediction model:

ln (y)~b0
:
Xn

i~1

(bi
: ln (xi))ze ð1Þ

where y denotes the observed biomass for each plot in the field, n the number of
parameters extracted out of one class of sensors but also across sensors, xi the ith
parameter of the model, bi the regression coefficients, and e the error term. The
logarithmic model was chosen, because approximation of volume is based on a
multiplicative action of single parameters. Regression analysis was performed with
function mvregress of software package MATLAB. We computed maximum like-
lihood estimates with a limit of 100 iterations and the default settings of convergence
tolerance for changes of beta and the objective function. We applied a forward model
selection algorithm with function stepwisefit of software package MATLAB with an
entrance tolerance of P , 0.01 and an exit tolerance of P , 0.05 to assess the
contribution of the different parameters to the described variance in the model and to
select a final sensor fusion calibration model of biomass.

Evaluation of the prediction models. We determined the quality of our calibrations
estimating (i) the root mean squared relative error of calibration as a measure for the
accuracy of the biomass predictions as

RMSREC~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
s
:
Xs

i~1

ŷi{yi

yi

� �2
s

ð2Þ

where s denotes the number of samples in the dataset, ŷi the predicted and yi the
observed biomass of the ith plot and (ii) the coefficient of determination of calibration
between observed and predicted biomass R2

c . Moreover, over-fitting of the model was
tested by applying 5-fold cross validation. Cross validation was repeated 100 times
and the root mean squared relative error (RMSREv) and coefficient of determination
(R2

v ) of validation were averaged across runs.
Transferability of the calibrations across environments was determined applying

cohort validation. Biomass prediction models were calibrated with data collected in
the year 2011 and predicted plot dry biomass yield of year 2012 and vice versa. For the
cohort validations we estimated the bias m between the predicted and the observed
values as

m~1=s:
Xs

i~1
(ŷci{yi)=yi ð3Þ

where s denotes the number of samples in the dataset, ŷci the predicted and yi the
observed biomass of the ith plot. This bias indicates a general over- or underestimation
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of biomass yield. Furthermore, the root mean squared relative error (RMSREcv) and
the coefficient of determination were determined for the cohort validation (R2

cv).

Technical repeatability. To assess the precision of the developed precision
phenotyping platform, every plot was recorded twice within a repetition time of less
than 10 minutes except for BM3 in year 2011 where the repetition time was about 90
minutes. The technical repeatability was determined by comparing the two
measurements with linear regression. To quantify the results, the following statistics
were applied: (i) root mean squared relative error of repetition

RMSREw~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
:
Xm

i~1

ŷ1i{ŷ2i

ŷ2i

� �2
s

ð4Þ

where m denotes the number of repeated samples in the dataset, ŷ1i the first and ŷ2i the
second repetition of the same plot and (ii) the coefficient of determination of
repetition (R2

w).
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22. Würschum, T. et al. Genome-wide association mapping of agronomic traits in
sugar beet. Theor. Appl. Genet. 123, 1121–1131 (2011).

23. Small, K. S. et al. Identification of an imprinted master trans regulator at the
KLF14 locus related to multiple metabolic phenotypes. Nature Genet. 43, 561–564
(2011).

24. Lancashire, P. D. et al. A uniform decimal code for growth stages of crops and
weeds. Ann. Applied Biology 119, 561–601 (1991).
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